from the iodine numbers and 4-hour thiocyanogen numbers (6) are given in Table II.

Molecular distillation of these fractions effected further slight fractionation comparable to that shown in Table I.

The data in Table II suggest that crystallization methods may be used to advantage in connection with other physical and chemical methods for the separation of the oil components. The high percentage of linoleic acid glycerides present in Fraction G indicates the

presence of trilinolein, whereas the high saturated-acid content (combined as glycerides) of Fraction A suggets a concentration of oleo- and linoleo-dipalmitins.

REFERENCES

1. Hickman, K. C. D., Ind. Eng. Chem., 29, 1107 (1937).
2. Fawcett, E. W. M., J. Chem. Ind., Trans. and Comm. p. 49, Feb. (1939).
3. Rawlings, H. W., Oil and Soap, 16, 231 (1939).
4. Schönfeld, H., and Hefter, G., Chemie und Technologie der Fette und Fettprodukte, Vienna 1, 195-262 (1937).
5. Hickman, K. C. D., Ind. and Eng. Chem., 29, 968 (1937).
6. Wheeler, D. H., Riemenschneider, R. W. and Sando, C. E., J. Biol. Chem., 132, 695 (1940).

Report Smalley Foundation Committee

TE ARE presenting herewith the 22nd report of the Smalley Foundation Committee of the American Oil Chemists' Society. During these past twenty-two years considerable progress has been made in the accuracy of the determination of oil and nitrogen on cottonseed meal. While the results obtained in the determination of nitrogen were slightly lower than last year, this is the first time, to our knowledge, in which any collaborator went through the season without the loss of any point in the determination of oil. This record was made by Mr. A. G. Thompson, Ir., of the Southern Cotton Oil Company Laboratory at Columbia, S. C. It must be understood, in gauging the accuracy of the results a difference of two points in either direction from the average is permitted without a deduction from the grade. It is also interesting to note that six of the collaborators were tied for first place in the determination of nitrogen.

As usual, thirty samples of cottonseed meal were distributed to the collaborators.

There are attached to this report four tables indicating the standing in percentage of the members taking part. Table No. I gives the standing of 60 collaborators who reported oil determinations on all samples. Table No. II gives the standing of 68 collaborators who reported nitrogen results on all samples. Table No. III gives the standing of 60 collaborators who reported oil and nitrogen on all samples. In these tables we have taken into consideration the results of those reports which were received within the time specified in our original announcement of the Smalley Foundation work. In table No. IV we have given the standing of those collaborators who reported on all samples, but some of whose reports were received too late to be included under the rules.

The winning collaborators are as follows:

The "American Oil Chemists' Society Cup" for the highest efficiency in the determination of both oil and nitrogen on all samples is awarded to Analyst No. 55, A. G. Thompson, Jr., Southern Cotton Oil Company, Columbia, S. C., with an average of 99.993 per cent. The average efficiency is higher than that of last year, which was 99.964 per cent. The certificate for second place goes to Analyst No. 79, Chas. W. Rice and Company, Columbia, S. C., who had an efficiency of 99.987 per cent, as compared with 99.942 per cent for last year.

The certificate for the highest efficiency in the determination of oil only is awarded to Analyst No. 55, A. G. Thompson, Jr., Southern Cotton Oil Company, Columbia, S. C., with an average of 100.00 per cent, as compared with 99.947 per cent for last year. The certificate for second place goes to Analyst No. 79, Chas. W. Rice and Company, Columbia, S. C., with an efficiency of 99.989 as compared with 99.943 per cent for last year.

The certificate for the highest efficiency in the determination of nitrogen is awarded to Analysts Nos. 13, 28, 51, 55, 64 and 79, Barrow-Agee Laboratories, Memphis, Tenn.; F. F. Hasbrouck, Allied Mills, Inc., Peoria, Ill.; E. H. Tenent, Woodson-Tenent Company, Memphis, Tenn.; A. G. Thompson, Jr., Southern Cotton Oil Company. Columbia, S. C.; T. L. Rettger, Buckeye Cotton Oil Company, Memphis, Tenn.; Chas. W. Rice and Company, Columbia, S. C., with an average of 99.985 per cent, as compared with 99.996 for last year. The certificate for second place goes to Analysts Nos. 8 and 85, The Battle Laboratories, Montgomery, Ala., and Armour and Company, Chicago, Ill., the analytical work having been done by L. E. Norem, with an average of 99.975 per cent, as compared with 99.990 per cent for last year.

We thought it might be well to include in this report a list of the previous winners of the highest award for both oil and nitrogen. They are as follows:

1918-1919 G. C. Hulbert, Southern C. O. Co., Augusta, Ga.

G. C. Hulbert, Southern C. O. Co., Au-1919-1920 gusta, Ga.

C. H. Cox, Barrow-Agee Lab's, Memphis, 1920-1921

1921-1922 Battle Lab's, Montgomery, Ala.

1922-1923 Battle Lab's, Montgomery, Ala.

1923-1924 L. H. Forbes, Memphis, Tenn.

E. H. Tenent, International Sugar Feed 1924-1925 Co. No. 2, Memphis, Tenn.

Battle Lab's, Montgomery, Ala. 1925-1926

W. F. Hand, Miss. State College, State 1926-1927 College, Miss.

E. H. Tenent, International Sugar Feed 1927-1928 Co., Memphis, Tenn.

Geo. W. Gooch Lab's, Los Angeles, Calif. 1928-1929

Southwestern Lab's, Dallas, Texas. 1929-1930

W. F. Hand, Miss. State College, State 1930-1931 College, Miss.

J. N. Pless, Royal Stafolife Mills, Mem-1931-1932 phis, Tenn.

J. B. McIsaac, International Veg. Oil Co., 1932-1933 Savannah, Ga.

W. F. Hand, Miss. State College, State 1933-1934 College, Miss.

- 1934-1935 W. F. Hand, Miss. State College, State College, Miss.
 1935-1936 N. C. Hamner, Southwestern Lab's., Dal-
- 1935-1936 N. C. Hamner, Southwestern Lab's., Dallas, Texas.
- 1936-1937 N. C. Hamner, Southwestern Lab's., Dallas, Texas.
- 1937-1938 W. F. Hand, Miss. State College, State College, Miss.
- 1938-1939 W. F. Hand, Miss. State College, State College, Miss.
- 1939-1940 A. G. Thompson, Jr., Southern C. O. Co., Columbia, S. C.

We wish again to commend the careful and painstaking work of Mr. T. C. Law in the preparation and distribution of samples. As we have stated previously, few of us realize the amount of work required to handle this phase of our collaborative endeavors and members as a whole should be grateful to him for assuming this burden.

TABLE I.—D	ETERMINATION	\mathbf{OF}	OIL
------------	--------------	---------------	-----

TABLE 1.—DETERMINATION	OF OIL	
A 1 4 - 37	5	Per Cent
Analyst No.	Points off	Efficiency
55	0	100.000
	2	99.989
9-51		99.985
40		99.944
8-64		99.940
24	14	99,929
37-38-47		99,909
7787		99.895
		99.884
19-29-56		99.875
6	26	99.869
85		99.860
15-23		99.854
18-68		99.849
27	31	99.845
13-30-50		99.834
12	35	99.823
58	37	99.814
11-20-52		99.804
88		99.799
21-59	44	99.778
26	45	99.774
82	46	99.769
5		99.763
76		99.759
14	53	99.733
3-83	55	99,724
1-57-65-69		99.679
17		99.638
16		99.618
74		99.563
81		99.558
86		99.468
61		99.446
49-84		99.442
4		99,397
2		99.392
53		99.336
22		99.110
71		99.065
60		99.024
48	205	98,970

TABLE II.—DETERMINATION OF NITROGEN

		Per Cent
Analyst No. Po	ints off	Efficiency
13-28-51-55-64-79	3	99.985
8-85	5	99.975
3-17-38	6	99.970
40	7	99.966
2-4-24-37	10	99.951
20-44	11	99.945
5-9-29	12	99.940
15	13	99.936
14-19-87	14	99.930
56	15	99.925
12-18-22-60	16	99.923
6-21-58	17	
92		99.915
0.5	18	99.910
27	19	99.906
m /	21	99.896
4	22	99.891
FO.	24	99,881
	25	99.876
36-52	27	99,866
11-50	28	99.861
47	31	99.846
23	32	99.840
61-86	33	99,836
81	35	99.825
43-65-69-84-88	36	99.821
77	37	99.816

68-75	38 99	.810
42	41 99	.796
57	43 99	.787
16	44 99	.781
53	50 99	751
-49		.687
71		657
32		.646
48	83 99	.587
30		.563
41		488
74		.064
		000
	//	

TABLE III.—DETERMINATION OF OIL AND NITROGEN

t	No. Pr
	110.
	64
-	

-	38
	21-23
•	41.43
	52
-	

-	69

TABLE IV.—SPECIAL TABLE DETERMINATION OF OIL

Analyst No.	Points off	Efficiency
7	38	99.808
62	81	99.593
70	101	99.492
10	119	99.401

DETERMINATION OF NITROGEN

7 62 25 10	34 60	99.945 99.831 99.701 99.672
70		99.567 99.567

DETERMINATION OF OIL AND NITROGEN

7	***************************************	99.877

10		99.537
70		99.530

L. B. CALDWELL
T. C. LAW
W. C. MOOR
J. N. PLESS
E. H. TENENT
M. E. WHITTEN
J. VOLLERTSEN, Chairman.